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An iterative transform method is proposed for solving the phase problem in

protein crystallography. In each iteration, a weighted average electron-density

map is constructed to define an estimated protein mask. Solvent flattening is

then imposed through the hybrid input–output algorithm [Fienup (1982). Appl.

Opt. 21, 2758–2769]. Starting from random initial phases, after thousands of

iterations the mask evolves into the correct shape and the phases converge to

the correct values with an average error of 30–40� for high-resolution data for

several protein crystals with high solvent content. With the use of non-

crystallographic symmetry, the method could potentially be extended to phase

protein crystals with less than 50% solvent fraction. The new phasing algorithm

can supplement and enhance the traditional refinement tools.

1. Introduction

Finding the phases of diffracted X-rays is an important step in

protein structure determination. Although the use of seleno-

methionine and multiple anomalous dispersion (MAD) has

rendered the procedure almost routine, the time and resources

involved can still be substantial for many large proteins, not to

mention the difficulty of expressing some selenomethionine-

substituted proteins in eukaryotic hosts (Strop et al., 2007).

Alternate techniques that reduce the experimental and

investigator demands are therefore still of considerable

importance.

Recently, an iterative transform algorithm has been

proposed by Liu et al. (2012) to retrieve the phases. An

envelope of the region occupied by the protein inside the unit

cell is assumed. In each iteration, Fourier refinement (repla-

cing calculated Fourier amplitudes by observed ones) is

combined with a density modification in real space, which is

essentially a gradual solvent flattening through the hybrid

input–output (HIO) algorithm (Fienup, 1982). For a peculiar

choice of the protein boundary, Liu et al. were able to recover

several high-resolution structures with high solvent content.

As such, that work constitutes important progress in solving

the phase problem. It is obviously desirable to eliminate the

requirement of a prior knowledge of the protein region. As

will be demonstrated below, it is possible to do so and there-

fore possible to directly phase protein crystals with high

solvent content.

We have followed basically Liu et al.’s algorithm except that

we allow the protein boundary to evolve with iteration. In

each iteration, a weighted average density map is constructed

to define the protein region. Thus the protein boundary is not

assumed beforehand, rather it is dynamic and becomes accu-

rate only at the end of successful calculations. Therefore, our

procedure is ab initio phasing. A very similar idea has been

pursued by Millane & Stroud (1997) and by van der Plas &

Millane (2000) in their reconstruction of icosahedra virus

images from Fourier intensities. Also the related idea of a

dynamic support has been studied in the field of coherent

diffraction imaging (Marchesini et al., 2003; Dronyak et al.,

2009).

Although our primary interest is in ab initio phasing, our

method can also be used for phase extension. Prior knowledge

of low-resolution phases (say 10 Å) leads to fast convergence

of high-resolution structures.

This paper is organized as follows. In x2 our methodology is

described. In x3 results of trial calculations are reported. The

possibility of direct phasing for low-solvent-content crystals

with non-crystallographic symmetry (NCS) is examined in x4.

The paper ends with a discussion in x5 and a conclusion.

2. Methodology

Our iterative transform algorithm is represented by the

flowchart in Fig. 1. Each iteration begins with a real-space

density gm on the upper-left corner from the previous round of

calculation. A fast Fourier transform of the density yields

phases which are combined with the observed Fourier

magnitudes to produce (via a fast inverse Fourier transform)

the new electron density �mþ1. On each grid point in the unit

cell, a weighted average density can be derived from the

electron density �j as follows:

Wi ¼
X

j for dij<r

r� dij

r
�j; ð1Þ

where the subscript i or j represents a grid point in the unit

cell. dij is the distance between two grid points. r is a radius
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which can be used to control the convergence of the solvent

region. Initially, r can be as big as half of the unit-cell

dimension. During the iterations, r is gradually reduced to an

appropriate value.

We can also use a Gaussian function to calculate the

weighted average map:

Wi ¼
P

j

exp½�d2
ij=ð2�

2Þ��j; ð2Þ

where � again can be used to control the convergence of the

solvent region.

The weighted average defined in equations (1) or (2) can be

easily evaluated using the convolution theorem. For a given

solvent content, a proper cutoff value Wcutoff can be found by

adjusting it such that the calculated solvent content agrees

with the expected value. A grid point is regarded to be inside

the mask if and only if the average density there is above

Wcutoff .

Outside the protein mask, the density is gradually driven to

zero through the hybrid input–output algorithm:

gmþ1
i ¼

�mþ1
i if Wi � Wcutoff

gm
i � "�

mþ1
i otherwise;

�
ð3Þ

where the superscript labels the iteration number and the

subscript represents a grid point in the unit cell. " is a feedback

parameter which can be used to optimize the convergence of

the algorithm. �i and gi correspond to electron density before

and after the HIO density modification and histogram

matching. The next round of iteration begins with the new

density gmþ1
i .

During the iterations, the estimated protein mask is dyna-

mically updated and gradually converges to the correct shape.

Histogram matching is used to modify the electron density

inside the mask so that the correct electron density of the

molecule emerges progressively.

3. Trial calculations

Following Liu et al., we will focus on trial calculations carried

out for a photosynthetic reaction center structure (PDB code

2uxj, Koepke et al., 2007). The space group is P43212. The cell

dimensions are a = 139.376, b = 139.376 and c = 235.041 Å.

There are 7707 non-hydrogen protein atoms in the asymmetric

unit and the solvent content is 76.56%. The crystal diffracts to

2.25 Å, with lowest resolution at 27.12 Å. The completeness of

the data set is 94%, with a total R value of 0.195. It is a good

data set, but just like any typical set, there are reflections

missing including the 92 reflections below 27.12 Å. The

magnitudes of missing reflections below 2.25 Å including F000

are automatically reconstructed during the iterations. In other

words, the intensities of missing reflections are calculated from

the estimated density function in each iteration. The unit cell

is discretized for fast Fourier transform, the distance between

two nearby grid points is 1 Å. The density function is defined

only on the grid points.

In principle, we can choose a tight mask for the protein

region (i.e. 23% of the unit-cell volume) during each iteration

step. But we have found that a somewhat different choice

seems to be more effective. We have chosen a loose mask

which includes 31% of the unit-cell volume, i.e. the volume of

the protein plus 8% solvent. Correspondingly, the solvent

region computed from the average density map occupies 69%

of the unit-cell volume. This choice is motivated by the

thinking that during the iterations, the computed boundary

might not match the surface of the protein tightly. With that

choice, the density histogram inside the protein mask is shown

as the black curve in Fig. 2. The corresponding density histo-

gram of a somewhat smaller formaldehyde-activating enzyme

(Fae) structure [PDB code 1y5y (Acharya et al., 2005), in the

same space group, with a smaller solvent fraction 68%] is

shown as the red curve in the same figure. There is a
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Figure 2
Density histogram inside a loose protein mask for 2uxj (black) and 1y5y
(red) at 2.25 Å resolution.

Figure 1
A flowchart of the iterative transform algorithm described in x2.

Figure 3
Weighting functions [equations (1) and (2)] used for calculating the
average density at the beginning and end of an iterative run.



substantial difference between the two histograms. It turns out

that they lead to the same result. As a note, the density

histograms are calculated in the standard way. In the calcu-

lation of the reference density histogram, a choice of F000 is

made so that the average density inside the protein mask is

about 0.05 e Å�3. This choice was found to work empirically. It

partially reflects the solvent contained within the protein

mask.

To monitor the evolution of the iteration, we compute the

mean error in phase angle (�’) defined as follows:

�’ ¼

P
h;k;l arccos cos ’trueðh; k; lÞ � ’calðh; k; lÞ

� �� �
P

h;k;l 1
: ð4Þ

After some trial and error, a good choice of the width (�) of

the Gaussian weighting function in equation (2) is found to

decrease linearly from 8 to 4 Å in 10 000 iterations. Alter-

natively, a pyramidal weighting function in equation (1) can be

used for which the radius r decreases from 18 to 9 Å in the

same number of iterations, as shown in Fig. 3. The HIO

feedback parameter in equation (3) is taken to be " ¼ 0:9.

With the above choice of parameters, a batch of 20 inde-

pendent calculations (with different random starting phases)

are carried out. The phase error of the eight successful runs

and one unsuccessful run is depicted in Fig. 4(a). In all the

successful runs, the error drops suddenly from 90� to about

50�. After 8000 iterations, the HIO scheme is gradually turned

off and a complete solvent flattening is imposed after 9500

iterations. That leads to a further drop of the phase error to

about 32�, whereas for the unsuccessful run, the phase error

remains at 90� (random phases).

It is also very instructive to examine the evolution of the R

value, which is calculated from the density function gmþ1
i

defined earlier in connection with the flowchart. As is well

known, Rfree is the R value that correlates well with the phase

error (Brünger, 1992). For the Rfree calculation, 5% of the

diffraction intensity data is set aside from the working set. For

the same runs depicted in Fig. 4(a), their Rfree values are

shown in Fig. 4(b). Clearly, the Rfree value tracks the phase

error in the sudden drop. After solvent flattening, the

successful runs all end up with a unique Rfree value of about

0.23. The Rwork value is actually quite informative too, as

shown in Fig. 4(c). Since the sudden drop of the R value is a

good indicator of a corresponding improvement in phase

error, it is very useful for a new structure determination.

A phase error of 32� means the final density map is very

accurate. Examples of 2.25 Å maps are shown in Fig. 5. Some

of the water molecules are visible in the map. It is also of

interest to have a look at the protein mask near the end of a

successful run (Figs. 6 and 7). There are still small parts of the

protein sticking out of the mask despite the accuracy of the

calculated phases.

As an example of our ability to invert lower-resolution data,

we cutoff the diffraction data of 2uxj at 3.5 Å resolution and

used them in a calculation. A loose protein mask which

occupies 31% of the unit cell was updated in iterations. The

reference density histogram was computed from 1y5y at 3.5 Å

resolution. The evolution of the phase error and Rfree is shown

in Fig. 8. Among a batch of 20 runs, five are successful with a

mean phase error of 34�. Typical electron-density maps are

shown in Fig. 9.

Aside from 2uxj, we have examined several other structures

with good diffraction data and high solvent content, including

1y5y and a human thyroid hormone receptor (3ilz, Bleicher et
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Figure 4
Evolution of the phase error and R values for eight successful and one
unsuccessful runs of 2uxj described in x3.

Figure 5
Two calculated 2.25 Å electron-density maps of 2uxj from successful runs
in Fig. 4.



al., 2008). The last one is in the P212121 space group. The

calculated results are similar to those of 2uxj. In particular, the

average phase errors are around 30–40�. The Fae (1y5y) has a

fivefold non-crystallographic symmetry, which was not used in

the calculations. Since we have used the density histogram of

1y5y to retrieve the phases of 2uxj, one might expect that the

histogram of 2uxj can be used to retrieve the phases of 1y5y. It

turns out to be untrue for 2 Å data. Instead, the histogram of

1ejb (Meining et al., 2000) works. The evolution of phase error

is displayed in Fig. 10. More than 10 000 iterations are needed

for some runs to converge. The final average phase error is

about 38� for 2 Å data. Typical electron-density maps are

shown in Fig. 11 and the final protein mask is depicted in Fig.

12. It should be noted that a phase error of 30� can be achieved

with the histogram of 1y5y itself. Therefore there are probably

other structures whose histograms match 1y5y better than

1ejb. Another note is that for 1y5y, a tight protein mask

actually works better than a loose mask in terms of success

rate. Finally, at 2.25 Å the histogram of 2uxj can indeed be

used to retrieve the phases of 1y5y.
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Figure 6
Stereograms of calculated protein mask compared with an atomic model
of 2uxj in strands.

Figure 7
Stereograms of calculated protein mask compared with an atomic model
of 2uxj in wireframe.

Figure 8
Evolution of average phase error and R value of 3.5 Å calculations of
2uxj.

Figure 9
Typical calculated electron-density maps of 2uxj at 3.5 Å resolution.



4. Non-crystallographic symmetry

An important criterion for iterative algorithms such as HIO to

work is the requirement that the number of independently

measured data points exceeds the number of unknown vari-

ables, as first pointed out by Miao et al. (1998). Thus it is not

surprising that with the use of non-crystallographic symmetry

(NCS), our method may be extended to phase protein crystals

with less than 50% solvent fraction as the NCS reduces that

number of unknown variables (the electron density within the

protein mask). Liu (2012) has illustrated that using an artificial

structure possessing NCS, assuming that the envelope is

available. Millane & Lo (2013) have emphasized the same

point. To further demonstrate that possibility, we have studied

the structure of a carbamoyltransferase (PDB code 4nf2,

Center for Structural Genomics of Infectious Diseases,

unpublished work). The space group is P212121. The cell

dimensions are a = 85.89, b = 99.89 and c = 118.99 Å. The NCS

axis is threefold. The solvent fraction is 44.79%. The resolu-

tion range of the diffraction data extends from 29.23 to 1.74 Å,

with an R value of 0.147.

As a first step in showing the possibility of an iterative

phasing scheme, we assume a given low-resolution envelope

(calculated from phases at 30 Å resolution) and the orienta-

tion and position of the threefold axis. Synthetic diffraction

data are used instead of real data, but bulk solvent correction

is taken into account. With those we have carried out HIO

iterations with the 1.74 Å data. A reference density histogram

was computed from 4nf2 itself at 1.74 Å resolution. Starting

essentially from random phases, the evolutions of the phase

error at three resolution levels are shown in Fig. 13. The

protein mask is kept fixed throughout the iterations, and the

threefold symmetry inside the protein envelope is enforced by

conventional NCS averaging in updating the density function.

It is clear from Fig. 13 that correct phases can be retrieved

after many iterations despite the low solvent content.

While the orientation of the NCS axis can in general be

calculated from the self-rotation Patterson correlation func-

tion, the position of the axis and the protein mask to be used

for threefold rotations are unknown before the crystal is

phased. It is not clear how to calculate those entities itera-

tively, unlike the solvent boundary. Before this problem is

solved, it is useful to consider the possibility of obtaining the

information about the NCS axis and protein envelope from

another independent approach – a real-space approach to the

phase problem that we have been exploring.

The real-space approach is a scheme of generating

approximate density maps directly from the diffraction

intensity data. The unit cell is discretized into grid points. On

each grid point, one can assign one or zero corresponding to a

point scatterer or none. For any given configuration of the
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Figure 10
Evolution of phase error and R value of 2 Å runs of 1y5y described in x3.

Figure 11
Typical calculated electron-density maps of 1y5y at 2 Å resolution from
successful runs in Fig. 10.

Figure 12
Stereograms of calculated protein mask for 1y5y from successful runs in
Fig. 10.



lattice (the pattern of zero’s and one’s) and a selected

diffraction data set, the R value can be calculated. By flipping

the zero and one into each other on each grid point, one can

optimize the R value of the configuration. In essence, this is a

construction of optimal binary maps directly from the

diffraction intensities. More details can be found in Su (2008),

where examples of protein envelopes constructed from real

diffraction data can be found.

For 4nf2, we have constructed density maps directly from

the 6–8 Å experimental diffraction data. Those maps are

compared with the atomic model to show that they can

provide the information we are looking for. In Fig. 14, a binary

map calculated with 8 Å data (indicated by the green dots) is

superimposed on the atomic model in wireframe. It is a slice of

the unit cell perpendicular to the NCS axis. From the stereo-

grams, three copies of the proteins can be seen contained

approximately within an inverted triangular boundary. The

NCS axis runs through the center of the inverted triangle. A

channel containing this axis is actually visible in a composite

density map from two (the green and red dots) independent

6 Å calculations, as shown in Fig. 15. There are 36 � 36 � 44

grid points in the unit cell in both 6 Å and 8 Å calculations.

5. Discussion

For protein crystals with 50% or higher solvent content, Liu et

al. have provided strong evidence that phasing through

iterative transform is possible provided a protein envelope is

available. What we have shown through the trial calculations

of 2uxj and other structures is that the assumption of an

envelope is not necessary, and therefore ab initio phasing is

possible. While further trial calculations involving more types

of structures remain to be carried out, the generality of our

methodology strongly supports the claim that direct phasing is

possible for many high-solvent-content protein crystals.

Many protein crystals with lower solvent content possess

NCS. We have used 4nf2 as an example to argue that for those

crystals a real-space approach may yield enough information

about the NCS axis and the protein mask so that an iterative

scheme can be employed to find accurate phases.

Although our primary concern in this paper is direct

phasing, the algorithm can be used to supplement and enhance

many existing refinement tools. Partial knowledge of some of

the phases, for example, can easily be incorporated in the

iteration. Prior real-space information such as solvent region

(Zou & Phillips, 1998; Lo et al., 2009) or protein fragments can

also be employed in the density modification. The large

number of iterations helps to eliminate the bias of initial

phases.

Although our ab initio iterative phasing algorithm resem-

bles the conventional solvent flattening (Wang, 1985) refine-

ment, there are important differences. It is instructive to make

a comparison. First, the density modification in the solvent

region via the HIO scheme is much more powerful than simply

setting the solvent density to a constant. It is well known,

for example, that HIO can overcome the stagnation problem

and therefore it makes the convergence toward the correct

solution possible, whatever the initial starting phases are.

Secondly, the number of iterations matters. We have seen in

the trial calculations that tens of thousands of iterations are

needed in general to retrieve the phases correctly. Thirdly, the

missing low-resolution central reflections (due to the beam

stop) are not included in the conventional refinement, but they
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Figure 13
Evolution of phase error of several resolution ranges of 4nf2 with a fixed
protein mask described in x4.

Figure 14
Binary density (stereo) map calculated from 8 Å data of 4nf2 compared
with the atomic model in wireframe.

Figure 15
Binary density (stereo) maps calculated from 6 Å data (red and green
dots) of 4nf2 exhibiting a channel along the NCS axis.



are dominant terms in the Fourier expansion of the density

function and they can greatly affect the construction of the

shape (Miao & Sayre, 2000; Miao et al., 2000) of the protein. In

our phasing scheme, they are reconstructed (Chen et al., 2007;

Liu et al., 2012) from other existing reflections; thus a very

complete Fourier expansion of the density is achieved, and

therefore very accurate phases can be retrieved.

Finally, a most important new feature of our algorithm is the

evolution of solvent boundary or protein mask. It is true that

the boundary could change in the traditional solvent flattening

cycles, but not to the extent that happens in our algorithm,

where it goes from a completely random boundary to a very

accurate one. That is why we can start from random phases

and the traditional refinement requires a set of good phases to

start with. All of the above factors conspire to make ab initio

phasing possible. For the same reasons, our iterative scheme

can greatly increase the chance of success of a refinement job.

6. Conclusion

The traditional way of solving the phase problem starts by

collecting the experimentally determined phases, which are

rarely accurate enough to yield an interpretable electron-

density map. Phase improvement using a variety of density-

modification methods are generally required. Solvent flat-

tening, histogram matching (Zhang & Main, 1990a,b) and non-

crystallographic averaging (Rossmann, 1995) are the main

techniques. In general, it is believed (Taylor, 2010) that

density-modification techniques will not turn a bad map into a

good one, but they will certainly improve a promising map that

shows some interpretable features.

It has gradually been realized (Liu et al., 2012; Millane &

Lo, 2013) in very recent years that a general class of iterative

projection algorithms (Elser, 2003), which includes the HIO

scheme, can considerably increase the radius of convergence

over the conventional density-modification algorithms. Those

algorithms offer the possibility of protein structure determi-

nation starting with only information on the molecular

envelope (Hao, 2001) and low-order non-crystallographic

symmetry.

It turns out that, as we have demonstrated in this paper, the

convergence region of the iterative projection algorithms can

be so large that no prior knowledge of the molecular envelope

is needed at all, at least in high-solvent-content crystals.

Almost any given initial density or phases will iterate towards

the correct density or phases, given a large enough number of

iterations. With modest NCS, the same thing can happen for

low-solvent-content crystals. Thus direct phasing is quite likely

for most, if not all, protein crystals.
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Brünger, A. T. (1992). Nature (London), 355, 472–475.
Chen, C. C., Miao, J., Wang, C. W. & Lee, T. K. (2007). Phys. Rev. B,

76, 064113.
Dronyak, R., Liang, K. S., Stetsko, Y. P., Lee, T. K., Feng, C. K., Tsai,

J. S. & Chen, F. R. (2009). Appl. Phys. Lett. 95, 11908.
Elser, V. (2003). Acta Cryst. A59, 201–209.
Fienup, J. R. (1982). Appl. Opt. 21, 2758–2769.
Hao, Q. (2001). Acta Cryst. D57, 1410–1414.
Koepke, J., Krammer, E. M., Klingen, A. R., Sebban, P., Ullmann,

G. M. & Fritzsch, G. (2007). J. Mol. Biol. 371, 396–409.
Liu, Z. C. (2012). PhD thesis, Institute of High Energy Physics,

Chinese Academy of Sciences, People’s Republic of China.
Liu, Z.-C., Xu, R. & Dong, Y.-H. (2012). Acta Cryst. A68, 256–265.
Lo, V., Kingston, R. L. & Millane, R. P. (2009). Acta Cryst. A65, 312–

318.
Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A.,

Howells, M. R., Weierstall, U. & Spence, J. C. H. (2003). Phys. Rev.
B, 68, 140101(R).

Meining, W., Mortl, S., Fischer, M., Cushman, M., Bacher, A. &
Ladenstein, R. (2000). J. Mol. Biol. 299, 181–197.

Miao, J., Kirz, J. & Sayre, D. (2000). Acta Cryst. D56, 1312–1315.
Miao, J. & Sayre, D. (2000). Acta Cryst. A56, 596–605.
Miao, J., Sayre, D. & Chapman, H. N. (1998). J. Opt. Soc. Am. A, 15,

1662–1669.
Millane, R. P. & Lo, V. L. (2013). Acta Cryst. A69, 517–527.
Millane, R. P. & Stroud, W. J. (1997). J. Opt. Soc. Am. A, 14, 568–579.
Plas, J. L. van der & Millane, R. P. (2000). Proc. SPIE, 4123, 249–260.
Rossmann, M. (1995). Curr. Opin. Struct. Biol. 5, 650–655.
Strop, P., Brzustowicz, M. R. & Brunger, A. T. (2007). Acta Cryst.

D63, 188–196.
Su, W.-P. (2008). Acta Cryst. A64, 625–630.
Taylor, G. L. (2010). Acta Cryst. D66, 325–338.
Wang, B. C. (1985). Methods Enzymol. 115, 90–112.
Zhang, K. Y. J. & Main, P. (1990a). Acta Cryst. A46, 41–46.
Zhang, K. Y. J. & Main, P. (1990b). Acta Cryst. A46, 377–381.
Zou, G. & Phillips, G. N. Jr (1998). Technical report (CRPC-

TR97743). Center for Research on Parallel Computation, Rice
University, USA.

research papers

98 He and Su � Direct phasing of protein crystals Acta Cryst. (2015). A71, 92–98

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mq5029&bbid=BB24

